(相关资料图)
from sklearn.datasets import make_blobsimport matplotlib.pyplot as plt
x, y = make_blobs(n_samples=500, n_features=2, centers=4, random_state=1)
color = ["red", "pink", "orange", "gray"]fig, ax1 = plt.subplots(1)for i in range(4): ax1.scatter(x[y == i, 0], x[y == i, 1], marker="o", s=8, c=color[i])plt.show()
from sklearn.cluster import KMeansn_clusters = 3cluster = KMeans(n_clusters=n_clusters, n_init="auto", random_state=1).fit(x)
# 聚类预测结果y_predict = cluster.labels_y_predict
array([2, 2, 0, 1, 0, 1, 0, 0, 0, 0, 2, 2, 0, 1, 0, 2, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 2, 0, 2, 1, 1, 2, 1, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 0, 1, 2, 2, 0, 1, 0, 0, 0, 0, 2, 1, 0, 1, 1, 0, 2, 0, 1, 1, 1, 0, 0, 2, 2, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 2, 0, 0, 2, 1, 0, 0, 0, 0, 2, 0, 0, 1, 2, 2, 0, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 0, 2, 2, 1, 2, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 2, 0, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 2, 2, 2, 2, 0, 0, 2, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 2, 0, 0, 0, 0, 1, 1, 0, 1, 0, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 2, 0, 0, 0, 2, 0, 2, 2, 0, 2, 2, 0, 1, 2, 0, 0, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 0, 1, 0, 0, 2, 2, 1, 0, 2, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 0, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 2, 2, 2, 2, 2, 2, 0, 2, 1, 2, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 0, 2, 0, 0, 2, 0, 0, 1, 1, 2, 0, 0, 1, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 2, 1, 2, 0, 1, 2, 2, 2, 0, 1, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 2, 0, 1, 0, 2, 1, 2, 1, 2, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 2, 2, 2, 0], dtype=int32)
# 质心的位置centroid = cluster.cluster_centers_centroid
array([[-8.0807047 , -3.50729701], [-1.54234022, 4.43517599], [-7.11207261, -8.09458846]])
color = ["red", "pink", "orange", "gray"]fig, ax1 = plt.subplots(1)for i in range(n_clusters): ax1.scatter(x[y_predict == i, 0], x[y_predict == i, 1], marker="o", s=8, c=color[i])ax1.scatter(centroid[:, 0], centroid[:, 1], marker="x", s=100, c="black")plt.show()
cluster.inertia_
1903.5607664611762
n_clusters = 4cluster = KMeans(n_clusters=n_clusters, n_init="auto", random_state=1).fit(x)cluster.inertia_
908.3855684760615
n_clusters = 100cluster = KMeans(n_clusters=n_clusters, n_init="auto", random_state=1).fit(x)cluster.inertia_
34.70849858088455
# 轮廓系数from sklearn.metrics import silhouette_scorefrom sklearn.metrics import silhouette_samples
silhouette_score(x, y_predict)
0.5882004012129721
silhouette_score(x, cluster.labels_)
0.3626791469009942
silhouette_samples(x, y_predict)
array([ 0.62982017, 0.5034877 , 0.56148795, 0.84881844, 0.56034142, 0.78740319, 0.39254042, 0.4424015 , 0.48582704, 0.41586457, 0.62497924, 0.75540751, 0.50080674, 0.8452256 , 0.54730432, 0.60232423, 0.54574988, 0.68789747, 0.86605921, 0.25389678, 0.49316173, 0.47993065, 0.2222642 , 0.8096265 , 0.54091189, 0.30638567, 0.88557311, 0.84050532, 0.52855895, 0.49260117, 0.65291019, 0.85602282, 0.47734375, 0.60418857, 0.44210292, 0.6835351 , 0.44776257, 0.423086 , 0.6350923 , 0.4060121 , 0.54540657, 0.5628461 , 0.78366733, 0.37063114, 0.35132112, 0.74493029, 0.53691616, 0.36724842, 0.87717083, 0.79594363, 0.84641859, 0.38341344, 0.42043012, 0.4024608 , 0.64639537, 0.46244151, 0.31853572, 0.10047008, 0.37909034, 0.56424494, 0.86153448, 0.82630007, 0.53288582, 0.35699772, 0.86994617, 0.52259763, 0.71296285, 0.5269434 , 0.42375504, 0.3173951 , 0.67512993, 0.47574584, 0.44493897, 0.70152025, 0.37911024, 0.44338293, 0.75528756, 0.23339973, 0.48832955, 0.36920643, 0.84872127, 0.87346766, 0.53069113, 0.85553096, 0.85764386, 0.47306874, 0.02036611, 0.83126042, 0.38759022, 0.49233068, 0.74566044, 0.60466216, 0.56741342, 0.43416703, 0.83602352, 0.72477786, 0.65632253, 0.53058775, 0.60023269, 0.77641023, 0.84703763, 0.70993659, 0.7801523 , 0.46161604, 0.84373446, 0.39295281, 0.46052385, 0.88273449, 0.87440032, 0.48304623, 0.53380475, 0.75891465, 0.85876382, 0.38558097, 0.85795763, 0.39785899, 0.85219954, 0.53642823, 0.86038619, 0.43699704, 0.38829633, 0.54291415, 0.69030671, 0.43887074, 0.51384962, 0.51912781, 0.83667847, 0.76248539, 0.69612144, 0.51530997, 0.86167552, 0.55346107, 0.56205672, 0.49273512, 0.38805592, 0.57038854, 0.68677314, 0.20332654, 0.75659329, 0.82280178, 0.51078711, 0.56655943, 0.39855324, 0.87777997, 0.81846156, 0.85011915, 0.53745726, 0.48476499, 0.57083761, 0.62520973, 0.48791422, 0.57163867, 0.80710385, 0.75753237, 0.80107683, 0.50370862, 0.49411065, 0.56270422, 0.46054445, 0.46870708, 0.53443711, 0.52806612, 0.54696216, 0.38036632, 0.8439417 , 0.43517732, 0.74914748, 0.64728736, 0.41663216, 0.8823285 , 0.65599758, 0.56449485, 0.51988053, 0.62928512, 0.88015404, 0.56872777, 0.39189978, 0.49345531, 0.46686063, 0.59723997, 0.44721036, 0.30721342, 0.75113026, 0.50932716, 0.73578982, -0.11420488, 0.41858652, 0.75882296, 0.7275962 , -0.04073665, 0.80153593, 0.87004395, 0.68206941, 0.43331808, 0.46482802, 0.84659276, 0.50866477, 0.68601103, 0.74449975, 0.83022338, 0.73707965, 0.27681202, 0.66098479, 0.28977719, 0.51863521, 0.63445046, 0.40559979, 0.14818081, 0.76068525, 0.23252498, 0.53021521, 0.47737535, 0.20930573, 0.73655361, 0.40050939, 0.38201296, 0.53131423, 0.8300432 , 0.57416668, 0.83002234, 0.43809863, 0.72601129, 0.30355831, 0.36933954, 0.48245049, 0.50126688, 0.50360422, 0.87011861, 0.56950365, 0.83076761, 0.71764725, 0.53645163, 0.7001754 , 0.50522187, 0.87888555, 0.77936165, 0.10535855, 0.73083257, 0.87808798, 0.66433392, 0.46478475, 0.37703473, 0.73374533, 0.74890043, 0.73918627, 0.63932594, 0.09590229, 0.56398421, 0.65471361, 0.32850826, 0.50686886, 0.82252268, 0.8784639 , 0.50307722, 0.55480534, 0.87909816, 0.47641098, 0.31311959, 0.52686075, 0.88545307, 0.20448704, 0.80778118, 0.44642434, 0.40574811, 0.88056023, 0.4973487 , 0.69311101, 0.72625355, 0.48589387, 0.4978385 , 0.55313636, 0.50253656, 0.87260952, 0.86131163, 0.40383223, 0.86877735, 0.47545049, 0.55504965, 0.88434796, 0.70495153, 0.88081422, 0.73413228, 0.74319485, 0.86247661, 0.68152552, 0.87029291, 0.81761732, 0.55085702, 0.49102505, 0.55389601, 0.124766 , 0.4404892 , 0.53977082, 0.57674226, 0.52475521, 0.71693971, 0.59037229, 0.27134864, 0.55075649, 0.5305809 , 0.45997724, 0.52098416, 0.69242901, 0.42370109, 0.55411474, 0.56138849, 0.53447704, 0.69329183, 0.54368936, 0.32886853, 0.86126399, 0.71469113, 0.49146367, 0.50494774, 0.82158862, 0.86861319, 0.54403438, 0.73940315, 0.81462808, 0.84352203, 0.48207009, 0.7354327 , 0.78085872, 0.87875202, 0.04033208, 0.50804578, 0.80938918, 0.51061604, 0.38053425, 0.64455589, 0.67957545, 0.87709406, 0.54770971, 0.49617626, 0.06631062, 0.82052164, 0.85247897, 0.4986702 , 0.41583248, 0.53794955, 0.73049329, 0.28601778, 0.87874615, 0.86432778, 0.53085921, 0.81504707, 0.80902757, 0.73654387, 0.79629133, 0.69825831, 0.71042076, 0.37753505, 0.87392688, 0.36052199, 0.53293388, 0.65652301, 0.8590337 , 0.37778142, 0.88171647, 0.55744616, 0.72988524, 0.47205379, 0.25321102, 0.36665898, 0.87510459, 0.54567292, 0.4377203 , 0.69836179, 0.88279947, 0.73712769, 0.7571288 , 0.64200399, 0.71414246, 0.66105524, 0.64924985, -0.03393189, 0.67879166, 0.87717775, 0.70483203, 0.81570721, 0.88445546, 0.42536337, 0.84352976, 0.19940384, 0.33446675, -0.05200008, 0.63729057, 0.86077417, 0.29232998, 0.85936207, 0.01230106, 0.74072871, 0.54572786, 0.4226642 , 0.75803727, 0.41490286, 0.47701084, 0.81796862, 0.80656788, 0.63246787, 0.43149716, 0.47554846, 0.67481449, 0.29491288, 0.47884262, 0.73531065, 0.74909774, 0.53905722, 0.60853703, 0.41799506, 0.26889856, 0.65941878, 0.57469934, 0.74695893, 0.53566443, 0.87031783, 0.55546256, 0.74959292, 0.52013136, 0.48602131, 0.84252024, 0.5553399 , 0.32396765, 0.83121787, 0.6507822 , 0.40589711, 0.81861161, 0.85537229, 0.51500612, 0.46370284, 0.35233694, 0.41423309, 0.66647621, 0.87838551, 0.55564776, 0.52172866, 0.80216634, 0.74626963, 0.70305507, 0.727976 , 0.4315848 , 0.71546113, -0.14042082, 0.70475791, 0.54510442, 0.49963818, 0.50497552, 0.5260391 , 0.7371355 , 0.39249758, 0.47181954, 0.51361169, 0.4902578 , 0.42402416, 0.54710266, 0.42517899, 0.54612333, 0.40920498, 0.73864644, 0.5056526 , 0.87463183, 0.41531738, 0.88324604, 0.4574416 , 0.50326717, 0.56519891, 0.86397315, 0.84031419, 0.81795975, 0.55956891, 0.43032946, 0.28423933, 0.75002919, 0.53694244, 0.86418082, 0.50509088, 0.75702551, 0.85123063, 0.47073065, 0.85904201, 0.69214588, 0.32746785, 0.87507056, 0.77556871, 0.47820639, 0.37692453, 0.23345891, 0.46482472, 0.36325517, 0.17966353, 0.31925836, 0.67652463, 0.35889712, 0.87965911, 0.3907438 , 0.5748237 , 0.74655924, 0.57403918, 0.69733646, 0.52992071])
from sklearn.metrics import calinski_harabasz_scorecalinski_harabasz_score(x, y_predict)
1809.991966958033
from time import timenow = time()calinski_harabasz_score(x, y_predict)time() - now
0.0034482479095458984
now = time()silhouette_score(x, y_predict)time() - now
0.008353948593139648
import datetimedatetime.datetime.fromtimestamp(time()).strftime(r"%Y-%m-%d %H:%M:%S")
"2023-04-21 00:14:24"
from sklearn.cluster import KMeansfrom sklearn.metrics import silhouette_samples, silhouette_scoreimport matplotlib.pyplot as pltimport matplotlib.cm as cmimport numpy as npfor n_clusters in [2, 3, 4, 5, 6, 7]: n_clusters = n_clusters # 设置画布和子画布 fig, (ax1, ax2) = plt.subplots(1, 2) # 设置画布尺寸 fig.set_size_inches(18, 7) # 设置子ax1的X轴刻度 ax1.set_xlim([-0.1, 1]) # 设置子ax2的Y轴刻度 0 ——(500 + (2 + 1)* 10) ax1.set_ylim([0, x.shape[0] + (n_clusters + 1) * 10]) # 实例化KMeans clusterer = KMeans(n_clusters=n_clusters, n_init="auto", random_state=10).fit(x) # 每个样本点对应的标签 cluster_labels = clusterer.labels_ # 计算轮廓系数的均值 silhouette_avg = silhouette_score(x, cluster_labels) print( "For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg, ) # 计算数据集中每个样本自己的轮廓系数 sample_silhouette_values = silhouette_samples(x, cluster_labels) # 为了不让图形紧贴X轴 y_lower = 10 for i in range(n_clusters): # 取出每个样本对应标签 i 的数组,并进行排序 ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i] ith_cluster_silhouette_values.sort() # 取出每个样本对应标签 i 的数组的 总记录数 size_cluster_i = ith_cluster_silhouette_values.shape[0] # 10 + 每个样本对应标签 i 的数组的 总记录数 y_upper = y_lower + size_cluster_i # 随机颜色 color = cm.nipy_spectral(float(i) / n_clusters) ax1.fill_betweenx( np.arange(y_lower, y_upper), # X轴 ith_cluster_silhouette_values, # Y轴 facecolor=color, alpha=0.7, # 透明度 ) # Y轴上的标签 ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) # 更新下一个簇的位置 y_lower = y_upper + 10 # 设置标签 ax1.set_title("The silhouette plot for the various clusters.") ax1.set_xlabel("The silhouette coefficient values") ax1.set_ylabel("Cluster label") # 画出平均线 ax1.axvline(x=silhouette_avg, color="red", linestyle="--") # 清空Y轴坐标 ax1.set_yticks([]) ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters) # 画第二个画布的散点图 ax2.scatter(x[:, 0], x[:, 1], marker="o", s=8, c=colors) # 画出质心 centers = clusterer.cluster_centers_ ax2.scatter(centers[:, 0], centers[:, 1], marker="x", c="red", alpha=1, s=200) ax2.set_title("The visualization of the clustered data.") ax2.set_xlabel("Feature space for the 1st feature") ax2.set_ylabel("Feature space for the 2nd feature") plt.suptitle( ( "Silhouette analysis for KMeans clustering on sample data " "with n_clusters = %d" % n_clusters ), fontsize=14, fontweight="bold", )plt.show()
For n_clusters = 2 The average silhouette_score is : 0.7049787496083262For n_clusters = 3 The average silhouette_score is : 0.5882004012129721For n_clusters = 4 The average silhouette_score is : 0.6505186632729437For n_clusters = 5 The average silhouette_score is : 0.5662344175321901For n_clusters = 6 The average silhouette_score is : 0.4358297989156284For n_clusters = 7 The average silhouette_score is : 0.3685767770971513
x
array([[-6.92324165e+00, -1.06695320e+01], [-8.63062033e+00, -7.13940564e+00], [-9.63048069e+00, -2.72044935e+00], [-2.30647659e+00, 5.30797676e+00], [-7.57005366e+00, -3.01446491e+00], [-1.00051011e+00, 2.77905153e+00], [-4.81826839e+00, -2.77214822e+00], [-5.33964799e+00, -1.27625764e+00], [-7.94308840e+00, -3.89993901e+00], [-5.54924525e+00, -3.41298968e+00], [-5.14508990e+00, -9.54492198e+00], [-7.09669936e+00, -8.04074036e+00], [-5.82641512e+00, -1.96346196e+00], [-1.83198811e+00, 3.52863145e+00], [-7.34267235e+00, -3.16546482e+00], [-7.34072825e+00, -6.92427252e+00], [-7.94653906e+00, -3.36768655e+00], [-8.24598536e+00, -8.61315821e+00], [-1.98197711e+00, 4.02243551e+00], [-4.35098035e+00, -3.69476678e+00], [-1.04768696e+01, -3.60318139e+00], [-1.10195984e+01, -3.15882031e+00], [-5.17255904e+00, -4.31835971e+00], [-2.40671820e+00, 6.09894447e+00], [-6.72149498e+00, -2.88440806e+00], [-6.58935963e+00, -4.43379548e+00], [-1.46126019e+00, 4.52549851e+00], [-9.19003455e-01, 3.45278927e+00], [-1.04093517e+01, -2.67482046e+00], [-6.36722809e+00, -3.32666072e+00], [-6.72766125e+00, -7.14516267e+00], [-2.27956075e+00, 5.10452190e+00], [-5.84887560e+00, -3.03970506e+00], [-6.07993051e+00, -7.08197568e+00], [-5.26682929e+00, -2.69645055e+00], [-6.05367512e+00, -9.62979077e+00], [-1.00822205e+01, -4.25071043e+00], [-1.18708735e+01, -3.03273343e+00], [-5.37107307e+00, -7.95635833e+00], [-9.37590900e+00, -4.55315308e+00], [-6.63401987e+00, -2.58340356e+00], [-9.54609655e+00, -2.84917422e+00], [-1.69825542e+00, 2.79071751e+00], [-5.60217602e+00, -6.59908490e-01], [-6.03429022e+00, -4.08821196e+00], [-6.37230784e+00, -8.63190046e+00], [-1.02264783e+01, -2.33998717e+00], [-5.95678148e+00, -3.97905701e+00], [-1.42706535e+00, 5.08904128e+00], [-6.20735304e-01, 6.59346952e+00], [-3.28102793e-01, 4.11918201e+00], [-1.06230545e+01, -4.54719161e+00], [-9.12674270e+00, -4.46180568e+00], [-5.24134497e+00, -3.23505873e+00], [-7.19967531e+00, -7.10400981e+00], [-1.01136977e+01, -4.12880752e+00], [-1.03416132e+01, -4.95351774e+00], [-1.25041532e+01, -6.06751247e+00], [-9.32331640e+00, -4.67574045e+00], [-7.32033002e+00, -2.73350095e+00], [-2.20533407e+00, 4.20765201e+00], [-5.27930518e-01, 5.92630669e+00], [-8.87430034e+00, -3.64808151e+00], [-6.66948545e+00, -4.26059884e+00], [-1.37397258e+00, 5.29163103e+00], [-6.60085708e+00, -3.11969688e+00], [-7.99175412e+00, -8.33564851e+00], [-6.22447869e+00, -2.43846224e+00], [-1.11054250e+01, -3.97106687e+00], [-8.95762335e+00, -4.87178859e+00], [-6.65461644e+00, -7.29335713e+00], [-1.09531378e+01, -3.36743812e+00], [-5.11351008e+00, -2.01881992e+00], [-7.24251438e+00, -9.66368448e+00], [-5.34929456e+00, -3.54577332e+00], [-6.29261332e+00, -3.68892426e+00], [-7.35387953e+00, -8.54504434e+00], [-5.78423473e+00, -4.48406848e+00], [-5.66256325e+00, -2.34390092e+00], [-8.60893311e+00, -4.61469279e+00], [-2.52019906e-01, 4.53559145e+00], [-1.92744799e+00, 4.93684534e+00], [-9.41306589e+00, -3.62907430e+00], [-8.48608233e-01, 5.45093196e+00], [-8.66753040e-01, 3.78295914e+00], [-1.01842915e+01, -4.01017303e+00], [-7.93192918e+00, -5.42450547e+00], [-2.75447175e+00, 4.57587230e+00], [-1.17171070e+01, -3.89622755e+00], [-8.85081213e+00, -4.00305113e+00], [-1.34392496e+00, 2.38428865e+00], [-8.16203654e+00, -7.31459336e+00], [-9.18886814e+00, -2.16359386e+00], [-7.13229260e+00, -4.02296730e+00], [-4.26103071e-02, 4.90923075e+00], [-7.24449448e+00, -7.65150300e+00], [-8.13784646e+00, -7.65806949e+00], [-6.73451345e+00, -1.38330194e+00], [-8.96369424e+00, -9.27033880e+00], [ 8.68765801e-01, 4.15785509e+00], [-5.45176929e-01, 3.81996593e+00], [-8.01694428e+00, -8.67137366e+00], [-3.33375571e+00, 5.23151969e+00], [-1.14385885e+01, -2.72109548e+00], [-2.52087627e+00, 5.08120139e+00], [-6.84394443e+00, -4.15058222e+00], [-5.87619738e+00, -3.28078916e+00], [-1.21819546e+00, 4.30633464e+00], [-2.00341358e+00, 4.45008673e+00], [-1.01077040e+01, -3.94479960e+00], [-7.03045854e+00, -1.23734756e+00], [-6.95685137e+00, -8.12381049e+00], [-2.33022219e+00, 4.78405366e+00], [-9.98435983e+00, -4.64804214e+00], [-2.33080604e+00, 4.39382527e+00], [-1.07796242e+01, -4.39085753e+00], [-2.03484486e+00, 3.76775946e+00], [-7.16744245e+00, -3.24998378e+00], [-4.99221336e-01, 4.77598259e+00], [-5.76681144e+00, -3.41281779e+00], [-1.06990569e+01, -4.49057157e+00], [-7.28729621e+00, -6.68306776e+00], [-8.17831829e+00, -8.22063813e+00], [-9.14443128e+00, -4.36637786e+00], [-7.22323543e+00, -3.51226376e+00], [-9.71296439e+00, -3.69088110e+00], [-3.19091528e-02, 4.74450157e+00], [-7.10406044e+00, -8.38198228e+00], [-7.52482501e+00, -7.50887444e+00], [-6.31161343e+00, -2.97641697e+00], [-5.38142198e-01, 4.81539041e+00], [-9.58041050e+00, -3.16857790e+00], [-9.53106924e+00, -2.91966168e+00], [-1.07650223e+01, -3.27877784e+00], [-9.54658956e+00, -4.64826945e+00], [-7.39393373e+00, -6.80612264e+00], [-2.99151157e+00, 2.64580131e+00], [-5.67558254e+00, -4.55902255e+00], [-3.51754177e+00, 5.64265390e+00], [-9.98539618e-01, 6.19864808e+00], [-5.96497901e+00, -2.03746469e+00], [-8.85279507e+00, -7.79138079e+00], [-4.64310426e+00, -2.22789422e+00], [-1.35938959e+00, 4.05424002e+00], [-5.25790464e-01, 3.30659860e+00], [-1.15637509e+00, 5.69971575e+00], [-6.42530010e+00, -2.17328619e+00], [-5.70183305e+00, -2.63083838e+00], [-6.04632971e+00, -6.92266990e+00], [-8.14559288e+00, -7.42775410e+00], [-9.15685095e+00, -4.05623576e+00], [-9.16170778e+00, -2.40998944e+00], [-1.46864442e+00, 6.50674501e+00], [-6.74672798e+00, -8.17245974e+00], [-1.98605940e+00, 3.06381408e+00], [-1.03289957e+01, -3.56680940e+00], [-9.34313235e+00, -4.00453699e+00], [-9.55954616e+00, -2.83102023e+00], [-1.01659113e+01, -4.12752889e+00], [-9.84144865e+00, -4.14356957e+00], [-1.02768102e+01, -2.33049946e+00], [-1.01030572e+01, -3.32315288e+00], [-9.90228742e+00, -3.03189848e+00], [-9.72121320e+00, -4.68662015e+00], [-1.85139546e+00, 3.51886090e+00], [-6.69321189e+00, -6.30021862e+00], [-6.53371839e+00, -8.14922726e+00], [-8.46369500e+00, -8.07146029e+00], [-5.75004528e+00, -3.56590967e+00], [-1.17104176e+00, 4.33091816e+00], [-8.52628579e+00, -8.66957601e+00], [-9.23890684e+00, -3.06843973e+00], [-6.12803051e+00, -2.51698058e+00], [-8.10406451e+00, -7.42020487e+00], [-1.61589091e+00, 4.18017563e+00], [-8.98758533e+00, -3.03333061e+00], [-1.19410359e+01, -3.60085418e+00], [-1.04399418e+01, -3.62982119e+00], [-1.14242679e+01, -2.18538860e+00], [-9.00992914e+00, -9.06865247e+00], [-6.47435649e+00, -3.74338863e+00], [-9.63138049e+00, -4.99793793e+00], [ 5.26015501e-01, 3.00999353e+00], [-9.76324393e+00, -9.36656623e+00], [-6.27965526e+00, -8.81809587e+00], [-9.46883276e+00, -6.19043506e+00], [-5.77336618e+00, -3.56739953e+00], [-6.69242533e+00, -8.30171791e+00], [-7.44439970e+00, -9.16803180e+00], [-7.11478469e+00, -5.38699134e+00], [-3.85803976e-01, 6.37359162e+00], [-2.00454712e+00, 4.17565013e+00], [-5.75517628e+00, -9.30821074e+00], [-9.14168421e+00, -7.20572694e+00], [-5.92092535e+00, -3.27574048e+00], [-2.35122066e+00, 4.00973634e+00], [-5.91907851e+00, -2.23919861e+00], [-5.62200526e+00, -8.69290967e+00], [-7.54246304e+00, -8.12722811e+00], [-2.41395785e+00, 5.65935802e+00], [-6.37151596e+00, -8.91129543e+00], [-1.21401792e+01, -4.78351741e+00], [-4.45264491e+00, 6.34401868e+00], [-5.59698820e+00, -4.19535853e+00], [-6.07503622e+00, -2.15606405e+00], [-7.24828238e+00, -7.05222790e+00], [-4.77891101e+00, -2.41333165e+00], [-1.24112155e+01, -5.73091492e+00], [-6.75264349e+00, -8.34654975e+00], [-5.05492139e+00, -4.22257749e+00], [-1.03825448e+01, -2.49524031e+00], [-7.22570502e+00, -3.79313579e+00], [-1.19498178e+01, -5.35567769e+00], [-7.62867092e+00, -8.06354170e+00], [-4.61767113e+00, -1.67111145e+00], [-5.12219664e+00, -3.31302123e+00], [-6.29225072e+00, -2.35738294e+00], [ 2.42271161e-04, 5.14853403e+00], [-8.79988166e+00, -2.24875438e+00], [-2.77687025e+00, 4.64090557e+00], [-6.39694979e+00, -3.76963703e+00], [-6.92263081e+00, -7.63972262e+00], [-1.15768688e+01, -4.78197653e+00], [-5.66824737e+00, -3.82607509e+00], [-1.11578826e+01, -2.60324173e+00], [-1.04730854e+01, -3.47573837e+00], [-9.98118494e+00, -3.77616083e+00], [-1.04102078e+00, 3.96331794e+00], [-9.32856015e+00, -2.60893309e+00], [-1.13898357e+00, 3.26214848e+00], [-6.17905638e+00, -7.96336646e+00], [-1.02356544e+01, -2.79806066e+00], [-5.77133256e+00, -8.59222577e+00], [-9.14500844e+00, -3.91798845e+00], [-1.61734616e+00, 4.98930508e+00], [-2.77867530e+00, 6.36256877e+00], [-9.54642849e+00, -5.63740853e+00], [-6.91486590e+00, -7.68969378e+00], [-1.84612968e+00, 4.30474400e+00], [-5.52834586e+00, -8.15360311e+00], [-6.00915337e+00, -3.34925152e+00], [-8.54628324e+00, -4.57138540e+00], [-7.31655639e+00, -7.77051293e+00], [-7.20423399e+00, -8.88176559e+00], [-7.55600732e+00, -8.01885499e+00], [-5.67856792e+00, -7.60509852e+00], [-5.21446826e+00, -4.79995312e+00], [-9.37662980e+00, -2.99722684e+00], [-5.31844709e+00, -8.92829839e+00], [-1.08278844e+01, -4.83392615e+00], [-6.06569910e+00, -1.53376946e+00], [-2.34673261e+00, 3.56128423e+00], [-1.25606826e+00, 5.00006839e+00], [-5.83979745e+00, -2.17836186e+00], [-6.87088211e+00, -2.22716236e+00], [-1.79600465e+00, 4.28743568e+00], [-9.37972697e+00, -4.13752487e+00], [-7.23605937e+00, -4.54710992e+00], [-1.02794488e+01, -1.89699302e+00], [-1.41689046e+00, 4.60832005e+00], [-5.78045412e+00, -4.58297922e+00], [ 8.52518583e-02, 3.64528297e+00], [-9.20268641e+00, -4.32778687e+00], [-9.56818636e+00, -4.56034695e+00], [-1.16434858e+00, 4.23178671e+00], [-6.16345851e+00, -3.10830802e+00], [-6.32152564e+00, -9.66280079e+00], [-7.52099974e+00, -9.13311836e+00], [-9.22029330e+00, -4.07211972e+00], [-1.08491682e+01, -2.95246712e+00], [-9.86366431e+00, -2.75129369e+00], [-6.79715224e+00, -3.45804136e+00], [-9.79490066e-01, 4.08668827e+00], [-2.06043810e+00, 5.23049549e+00], [-5.66839183e+00, -7.95067847e-01], [-7.57969185e-01, 4.90898421e+00], [-1.04205695e+01, -3.86688414e+00], [-7.12425009e+00, -6.70423870e+00], [-1.37889483e+00, 4.33337717e+00], [-6.61466444e+00, -7.52579102e+00], [-1.34052081e+00, 4.15711949e+00], [-6.21160000e+00, -8.29293984e+00], [-7.56885613e+00, -8.13527221e+00], [-1.77000693e+00, 3.78912781e+00], [-7.36585834e+00, -7.34577219e+00], [-1.49952284e+00, 5.28265879e+00], [-2.85882794e+00, 5.26983519e+00], [-7.73884935e+00, -3.24327665e+00], [-1.08201797e+01, -3.23163726e+00], [-8.53682012e+00, -3.36087575e+00], [-1.20349137e+01, -5.89593773e+00], [-5.26910909e+00, -2.73521824e+00], [-6.71299604e+00, -2.90324984e+00], [-8.36118634e+00, -2.72698382e+00], [-5.48941428e+00, -6.94662021e+00], [ 5.31139823e-01, 2.51012895e+00], [-5.64126775e+00, -7.24922893e+00], [-9.48263889e+00, -6.73588302e+00], [-7.53103704e+00, -6.76823676e+00], [-6.31078595e+00, -2.05174648e+00], [-8.70233178e+00, -4.19462540e+00], [-6.11013071e+00, -2.31061128e+00], [-5.83972633e+00, -9.20677418e+00], [-1.17536381e+01, -3.23855895e+00], [-9.29199482e+00, -9.85256171e+00], [-7.85568214e+00, -6.92950589e+00], [-1.01967107e+01, -2.08687717e+00], [-7.96356538e+00, -7.83357116e+00], [-6.77680402e+00, -6.65511992e+00], [-1.08749940e+01, -4.82113577e+00], [-1.84048021e+00, 3.80256924e+00], [-7.98067403e+00, -8.56048015e+00], [-6.32066246e+00, -3.30751892e+00], [-6.17979966e+00, -3.00803447e+00], [-2.17665436e+00, 3.40946304e+00], [-6.73224718e-01, 4.62002377e+00], [-8.93892171e+00, -3.51521408e+00], [-7.48937497e+00, -8.88475909e+00], [-2.89641328e+00, 5.28232880e+00], [-8.13399258e-01, 3.54697393e+00], [-5.77752667e+00, -2.85145276e+00], [-6.24883850e+00, -8.76563508e+00], [-3.10367371e+00, 3.90202401e+00], [-1.05724063e+00, 4.82677207e+00], [-5.73215048e+00, -5.04695454e+00], [-9.93696231e+00, -3.74222379e+00], [-3.03267723e+00, 4.72164926e+00], [-1.07035530e+01, -2.76066248e+00], [-5.68475631e+00, -3.76816924e+00], [-8.62182374e+00, -8.76567023e+00], [-6.67177294e+00, -9.97714796e+00], [-1.92577841e+00, 4.43910442e+00], [-8.16299488e+00, -3.38896569e+00], [-3.74380343e+00, -8.75345344e+00], [-5.66601211e+00, -4.97019633e+00], [-2.88961804e+00, 4.95702736e+00], [-2.35995841e+00, 4.20309542e+00], [-6.80491557e+00, -3.49602548e+00], [-7.10480676e+00, -4.10830531e+00], [-6.96685539e+00, -3.12876392e+00], [-6.31354495e+00, -8.01283267e+00], [-4.47120679e+00, -3.54131043e+00], [-1.53940095e+00, 5.02369298e+00], [-1.60875215e+00, 3.76949422e+00], [-1.01927698e+01, -3.14795512e+00], [-2.80207810e+00, 4.05714715e+00], [ 2.45098802e-01, 5.51754657e+00], [-3.31028117e+00, 3.51593428e+00], [-2.84187803e+00, 3.74073535e+00], [-5.75867612e+00, -8.75783107e+00], [-5.99591056e+00, -8.11285667e+00], [-4.98360687e+00, -3.20522961e+00], [-1.86845414e+00, 4.99311306e+00], [-9.71503679e+00, -4.77944598e+00], [-6.47373322e+00, -2.78682541e+00], [-6.99263028e+00, -7.14344077e+00], [-1.53773863e+00, 5.53597378e+00], [-1.04464505e+01, -4.62579659e+00], [-1.09679881e+00, 4.64722696e+00], [-7.25256877e+00, -2.91682833e+00], [-1.97451969e-01, 2.34634916e+00], [-1.00670412e+01, -4.06174061e+00], [-6.13468589e+00, -4.50793424e+00], [-1.03725172e+01, -4.70331816e+00], [-1.88188805e+00, 4.20573180e+00], [-7.15498484e+00, -3.10778598e+00], [-6.14254799e+00, -3.65202206e+00], [-7.42749427e+00, -9.63838456e+00], [-1.13009458e+00, 4.54419108e+00], [-6.28485505e+00, -8.78266971e+00], [-7.33325349e+00, -8.28490373e+00], [-6.40320111e+00, -7.16687592e+00], [-7.22187586e+00, -9.48843083e+00], [-6.09834293e+00, -7.44017905e+00], [-7.20807793e+00, -7.12024433e+00], [-9.68744022e+00, -6.04759636e+00], [-7.87372938e+00, -7.59578865e+00], [-1.14663009e+00, 4.10839703e+00], [-5.90344220e+00, -8.18075749e+00], [-2.76017908e+00, 5.55121358e+00], [-1.23606555e+00, 4.48382994e+00], [-9.97584967e+00, -4.42202236e+00], [-2.10668847e+00, 5.63099757e+00], [-4.73558876e+00, -4.23748969e+00], [-1.07233096e+01, -4.82111722e+00], [-8.26074369e+00, -5.64724782e+00], [-6.88384344e+00, -7.04605265e+00], [-2.15777347e+00, 4.09550489e+00], [-7.85988444e+00, -4.73888254e+00], [-4.60642026e-01, 4.59164629e+00], [-5.05685487e+00, -5.02946642e+00], [-7.66055006e+00, -8.46234942e+00], [-8.41923982e+00, -3.45834788e+00], [-1.09947323e+01, -4.06014253e+00], [-6.71376529e+00, -8.22199857e+00], [-1.07972600e+01, -4.24494314e+00], [-8.23746328e+00, -4.01400104e+00], [-2.93211866e+00, 4.72003759e+00], [-1.66145139e+00, 3.00986944e+00], [-7.65734347e+00, -1.04581360e+01], [-9.98054778e+00, -4.38249083e+00], [-5.51940374e+00, -2.38780334e+00], [-1.96967668e+00, 1.97165210e+00], [-3.88464981e+00, -2.84336261e+00], [-5.82969906e+00, -2.99067321e+00], [-6.66700176e+00, -9.14923899e+00], [-6.62889599e+00, -8.84071550e+00], [-6.48944961e+00, -2.06753733e+00], [-7.17134231e+00, -1.09442245e+01], [-1.13042466e+01, -3.87696807e+00], [-9.53654840e+00, -5.12933122e+00], [-6.09866132e+00, -7.42731125e+00], [-8.78925618e+00, -2.83764674e+00], [-7.32386504e+00, -7.96393491e+00], [-1.00330804e+01, -1.84274349e+00], [-1.03619773e+00, 3.97153319e+00], [-6.42829877e+00, -6.74397472e+00], [-2.87930430e+00, 6.85585852e+00], [-1.05299465e+01, -2.83521515e+00], [-6.11423078e+00, -3.20893543e+00], [-1.78245013e+00, 3.47072043e+00], [-8.95271809e+00, -3.34483385e+00], [-5.16617901e+00, -3.79170586e+00], [-1.64215050e+00, 3.28447114e+00], [-8.33534296e+00, -7.87023257e+00], [-6.31107706e+00, -3.92118081e+00], [-1.78002448e+00, 3.17336913e+00], [-1.68417686e+00, 3.63132825e+00], [-1.05552072e+01, -3.01417980e+00], [-5.34354009e+00, -2.13897664e+00], [-1.15365057e+01, -4.40124373e+00], [-4.89503758e+00, -2.48633456e+00], [-5.44396990e+00, -8.95941292e+00], [-1.58173878e+00, 5.02487013e+00], [-7.02993859e+00, -6.69931052e+00], [-6.17074238e+00, -2.56078204e+00], [-2.22186534e+00, 6.36136794e+00], [-7.57385446e+00, -8.31971406e+00], [-7.65822594e+00, -7.64292051e+00], [-6.89501293e+00, -9.31723608e+00], [-1.11141825e+01, -3.87242145e+00], [-7.94152277e-01, 2.10495117e+00], [-6.42803193e+00, -5.52129397e+00], [-5.89780702e+00, -8.19289680e+00], [-6.59169697e+00, -2.44779959e+00], [-6.45785776e+00, -3.30981436e+00], [-1.07755713e+01, -2.83750744e+00], [-1.02341495e+01, -3.22553505e+00], [-6.26681839e+00, -8.25516014e+00], [-5.20580980e+00, -3.29853839e+00], [-5.46045264e+00, -2.30831553e+00], [-7.04259952e+00, -3.45332351e+00], [-6.09962804e+00, -3.14226915e+00], [-5.66006950e+00, -3.43776965e+00], [-7.08097398e+00, -3.03972377e+00], [-8.41264712e+00, -6.68248825e+00], [-7.36513410e+00, -1.38859731e+00], [-1.04166504e+01, -4.43253346e+00], [-6.41623854e+00, -8.04588481e+00], [-5.88919348e+00, -2.37049472e+00], [-1.42946517e+00, 5.16850105e+00], [-6.56118069e+00, -3.95967311e+00], [-1.47299851e+00, 4.81654152e+00], [-5.88100804e+00, -3.31692615e+00], [-1.04125594e+01, -3.50140251e+00], [-8.55209377e+00, -3.15841000e+00], [-7.90673749e-01, 5.15690151e+00], [-1.00754365e-01, 4.51589257e+00], [-1.30901393e+00, 3.09420646e+00], [-9.54755699e+00, -2.18801345e+00], [-5.32030011e+00, -2.99303869e+00], [-9.48229870e+00, -5.06821960e+00], [-6.74361627e+00, -8.87844303e+00], [-1.02518924e+01, -2.55350460e+00], [-1.96576392e+00, 5.23446451e+00], [-5.88036774e+00, -2.36326290e+00], [-7.34774574e+00, -8.41955499e+00], [-7.58703957e-01, 3.72276201e+00], [-8.41357863e+00, -6.85069257e+00], [-8.20576492e-01, 5.33759195e+00], [-7.93489041e+00, -7.78403764e+00], [-5.69446566e+00, -4.06205304e+00], [-8.57698874e-01, 4.45305717e+00], [ 1.50975008e-01, 3.10076295e+00], [-6.55394441e+00, -6.44256627e+00], [-1.09316272e+01, -4.48636887e+00], [-6.50155596e+00, -4.65329331e+00], [-6.93650519e+00, -6.39281292e+00], [-1.01336898e+01, -4.75061833e+00], [-9.89148978e+00, -5.47902886e+00], [-8.89871617e+00, -4.85498304e+00], [-8.11394993e+00, -7.83656921e+00], [-5.29078354e+00, -3.64846688e+00], [-1.41076074e+00, 4.10984872e+00], [-9.50537595e+00, -4.63402669e+00], [-7.82749456e+00, -2.51032104e+00], [-6.38088086e+00, -8.50663809e+00], [-8.96014913e+00, -8.06349899e+00], [-7.66603898e+00, -7.59715459e+00], [-6.46534407e+00, -2.85544633e+00]])
# 导入库import numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets import load_sample_imagefrom sklearn.cluster import KMeansfrom sklearn.metrics import pairwise_distances_argminfrom sklearn.utils import shuffle
china = load_sample_image("china.jpg")plt.axis(False)plt.imshow(china)
china.shape
(427, 640, 3)
china.dtype
dtype("uint8")
china
array([[[174, 201, 231], [174, 201, 231], [174, 201, 231], ..., [250, 251, 255], [250, 251, 255], [250, 251, 255]], [[172, 199, 229], [173, 200, 230], [173, 200, 230], ..., [251, 252, 255], [251, 252, 255], [251, 252, 255]], [[174, 201, 231], [174, 201, 231], [174, 201, 231], ..., [252, 253, 255], [252, 253, 255], [252, 253, 255]], ..., [[ 88, 80, 7], [147, 138, 69], [122, 116, 38], ..., [ 39, 42, 33], [ 8, 14, 2], [ 6, 12, 0]], [[122, 112, 41], [129, 120, 53], [118, 112, 36], ..., [ 9, 12, 3], [ 9, 15, 3], [ 16, 24, 9]], [[116, 103, 35], [104, 93, 31], [108, 102, 28], ..., [ 43, 49, 39], [ 13, 21, 6], [ 15, 24, 7]]], dtype=uint8)
china[0][0]
array([174, 201, 231], dtype=uint8)
import pandas as pdpd.DataFrame(china.reshape(427 * 640, 3)).drop_duplicates().shape
(96615, 3)
n_clusters = 64china = np.array(china, dtype="float64") / china.max()
w, h, d = original_shape = tuple(china.shape)
w
427
h
640
d
3
assert d == 3, "d 必须为 3"
image_array = np.reshape(china, (427 * 640, 3))image_array.shape
(273280, 3)
image_array_sample = shuffle(image_array, random_state=0)[:1000]kmeans = KMeans(n_clusters=n_clusters, n_init="auto", random_state=0).fit( image_array_sample)
# 质心的坐标kmeans.cluster_centers_
array([[0.97323103, 0.97706735, 0.99369139], [0.32053664, 0.29638803, 0.25180599], [0.70375817, 0.7504902 , 0.74052288], [0.06169935, 0.06196078, 0.04235294], [0.50718954, 0.53594771, 0.40043573], [0.83529412, 0.86349206, 0.89505135], [0.40612745, 0.40612745, 0.22377451], [0.81568627, 0.53803922, 0.35529412], [0.22527233, 0.16034858, 0.13420479], [0.50028011, 0.54789916, 0.57478992], [0.73524384, 0.82021116, 0.91925591], [0.90313725, 0.90333333, 0.90607843], [0.26381462, 0.26773619, 0.1144385 ], [0.72268908, 0.36022409, 0.25210084], [0.38867102, 0.46230937, 0.42788671], [0.88687783, 0.91463047, 0.94932127], [0.97777778, 0.77254902, 0.60261438], [0.80999367, 0.82530044, 0.84845035], [0.61497326, 0.67593583, 0.71265597], [0.1120915 , 0.13888889, 0.13398693], [0.48714597, 0.49215686, 0.26143791], [0.33832442, 0.36684492, 0.31764706], [0.51372549, 0.33333333, 0.19529412], [0.8127451 , 0.89264706, 0.98071895], [0.14323063, 0.10718954, 0.07656396], [0.76068627, 0.85617647, 0.9604902 ], [0.45065359, 0.32581699, 0.28562092], [0.16127451, 0.24068627, 0.24215686], [0.33986928, 0.26339869, 0.09477124], [0.61699346, 0.59836601, 0.54052288], [0.20555556, 0.22287582, 0.08137255], [0.93776091, 0.9368754 , 0.9485136 ], [0.40392157, 0.16627451, 0.10156863], [0.89411765, 0.63764706, 0.43529412], [0.40606061, 0.44278075, 0.12121212], [0.225 , 0.07034314, 0.06446078], [0.28683473, 0.44593838, 0.43305322], [0.59176471, 0.55215686, 0.43137255], [0.5827451 , 0.55098039, 0.32078431], [0.20588235, 0.3379085 , 0.33202614], [0.83071895, 0.79150327, 0.7254902 ], [0.72679739, 0.56339869, 0.44575163], [0.03006536, 0.02538126, 0.01372549], [0.9 , 0.94498911, 0.99368192], [0.54980392, 0.44627451, 0.43294118], [0.74871795, 0.79140271, 0.79803922], [0.3025641 , 0.33182504, 0.18793363], [0.54836601, 0.63137255, 0.63529412], [0.69346405, 0.70653595, 0.64901961], [0.56339869, 0.40130719, 0.30718954], [0.93368192, 0.96104575, 0.99616558], [0.05784314, 0.17156863, 0.2127451 ], [0.11960784, 0.04191176, 0.0370098 ], [0.26039216, 0.23581699, 0.20156863], [0.52679739, 0.53431373, 0.49477124], [0.0799253 , 0.10644258, 0.054155 ], [0.71540616, 0.43473389, 0.32268908], [0.40627451, 0.40235294, 0.33960784], [0.33604827, 0.34690799, 0.12217195], [0.84684685, 0.91944886, 0.99194489], [0.46784314, 0.4372549 , 0.37607843], [0.16265173, 0.16190476, 0.12380952], [0.43071895, 0.24183007, 0.18627451], [0.31176471, 0.15392157, 0.13578431]])
# 质心的索引label = kmeans.predict(image_array)label
array([10, 10, 10, ..., 61, 3, 3], dtype=int32)
kmeans.cluster_centers_[1]
array([0.32053664, 0.29638803, 0.25180599])
image_kmeans = image_array.copy()for i in range(w * h): image_kmeans[i] = kmeans.cluster_centers_[label[i]]
image_kmeans
array([[0.73524384, 0.82021116, 0.91925591], [0.73524384, 0.82021116, 0.91925591], [0.73524384, 0.82021116, 0.91925591], ..., [0.16265173, 0.16190476, 0.12380952], [0.06169935, 0.06196078, 0.04235294], [0.06169935, 0.06196078, 0.04235294]])
image_kmeans = image_kmeans.reshape(w, h, d)image_kmeans.shape
(427, 640, 3)
# 随机取出64个质心centroid_random = shuffle(image_array)[:n_clusters]# 函数pairwise_distances_argmin(x1,x2,axis) #x1和x2分别是序列# 用来计算x2中的每个样本到x1中的每个样本点的距离,并返回和x2相同形状的,x1中对应的最近的样本点的索引labels_random = pairwise_distances_argmin(centroid_random, image_array, axis=0)image_random = image_array.copy()for i in range(w * h): image_random[i] = centroid_random[labels_random[i]]image_random = image_random.reshape(w, h, d)image_random.shape
(427, 640, 3)
labels_random
array([55, 55, 55, ..., 52, 60, 60])
plt.figure(figsize=(10, 10))plt.axis("off")plt.title("Original image (96,615 colors)")plt.imshow(china)plt.figure(figsize=(10, 10))plt.axis("off")plt.title("Quantized image (64 colors, K-Means)")plt.imshow(image_kmeans)plt.figure(figsize=(10, 10))plt.axis("off")plt.title("Quantized image (64 colors, Random)")plt.imshow(image_random)plt.show()
X 关闭
Copyright © 2015-2022 欧洲洁具网 版权所有
备案号:沪ICP备2022005074号-23
联系邮箱: 58 55 97 3@qq.com